Remodeling of Aorta Extracellular Matrix as a Result of Transient High Oxygen Exposure in Newborn Rats: Implication for Arterial Rigidity and Hypertension Risk
نویسندگان
چکیده
Neonatal high-oxygen exposure leads to elevated blood pressure, microvascular rarefaction, vascular dysfunction and arterial (aorta) rigidity in adult rats. Whether structural changes are present in the matrix of aorta wall is unknown. Considering that elastin synthesis peaks in late fetal life in humans, and early postnatal life in rodents, we postulated that transient neonatal high-oxygen exposure can trigger premature vascular remodelling. Sprague Dawley rat pups were exposed from days 3 to 10 after birth to 80% oxygen (vs. room air control) and were studied at 4 weeks. Blood pressure and vasomotor response of the aorta to angiotensin II and to the acetylcholine analogue carbachol were not different between groups. Vascular superoxide anion production was similar between groups. There was no difference between groups in aortic cross sectional area, smooth muscle cell number or media/lumen ratio. In oxygen-exposed rats, aorta elastin/collagen content ratio was significantly decreased, the expression of elastinolytic cathepsin S was increased whereas collagenolytic cathepsin K was decreased. By immunofluorescence we observed an increase in MMP-2 and TIMP-1 staining in aortas of oxygen-exposed rats whereas TIMP-2 staining was reduced, indicating a shift in the balance towards degradation of the extra-cellular matrix and increased deposition of collagen. There was no significant difference in MMP-2 activity between groups as determined by gelatin zymography. Overall, these findings indicate that transient neonatal high oxygen exposure leads to vascular wall alterations (decreased elastin/collagen ratio and a shift in the balance towards increased deposition of collagen) which are associated with increased rigidity. Importantly, these changes are present prior to the elevation of blood pressure and vascular dysfunction in this model, and may therefore be contributory.
منابع مشابه
Dietary saffron reduced the blood pressure and prevented remodeling of the aorta in L-NAME-induced hypertensive rats
Objective(s):The aim of this study was to investigate the effects of nutritional saffron (Crocus sativus L.) stigma hydroalcoholic extract on blood pressure (BP) and histology of the aorta in normotensive and hypertensive rats. Materials and Methods: Saffron (200 mg/kg/day) was given orally for 5 weeks to normotensive and hypertensive rats. Hypertension was induced by NG-nitro-L-arginine meth...
متن کاملEffect of thoracic epidural blockade on hypoxia-induced pulmonary arterial hypertension in rats
Objective(s): The present study was aimed to investigate the influence of thoracic epidural blockade on hypoxia-induced pulmonary hypertension in rats. Materials and Methods: Forty eight Wistar rats were randomly divided into 4 equal groups, named normoxia hypoxia hypoxia/ ropivacaine and hypoxia/saline. Animals were placed in a hypoxia chamber and instrumented with epidural catheters at the t...
متن کاملIncreased stiffness and cell-matrix interactions of abdominal aorta in two experimental nonhypertensive models: long-term chemically sympathectomized and sinoaortic denervated rats.
RATIONALE Sinoaortic denervated (SAD) and chemically sympathectomized (SNX) rats are characterized by a decrease in arterial distensibility without hypertension and would, thus, be relevant for analyzing arterial wall stiffening independently of blood pressure level. The fibronectin network, which plays a pivotal role in cell-matrix interactions, is a major determinant of arterial stiffness. We...
متن کاملRespective role of humoral factors and blood pressure in aortic remodeling of DOCA hypertensive rats.
Hypertension results in increased thickness and stiffness of large artery walls. The goal of our study was to assess the respective roles of humoral factors such as Ang II, endothelin and blood pressure in these aortic modifications. For this purpose, uninephrectomized rats received DOCA and high salt diet, and when hypertension was installed, they were treated for 5 weeks with either a long-ac...
متن کاملMetalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کامل